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Asymmetric synthesis of (+)-iso-6-cassine via
stereoselective intramolecular amidomercuration
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Abstract—The first asymmetric synthesis of (+)-iso-6-cassine is described. Lipase-catalyzed resolution, enantioselective Overman
rearrangement, and diastereoselective intramolecular amidomercuration were used for the installation of the three stereocenters
in (+)-iso-6-cassine, and cross-metathesis was employed for the attachment of the side-chain.
� 2007 Elsevier Ltd. All rights reserved.
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Substituted piperidine ring systems constitute the core
structures of many chemically and biologically impor-
tant compounds,1 and thus have been a focus of many
synthetic studies.2 Particularly, electrophile-induced
stereoselective heterocyclization reactions have provided
a convenient tool for the construction of such ring sys-
tems from the corresponding linear precursors.3 In this
context, we recently reported that Hg(II)-mediated tan-
dem Overman rearrangement and intramolecular ami-
domercuration reactions could be a very efficient
method for the stereoselective formation of cis- and
trans-2,6-dialkyl piperidine ring systems.4 The highlight
of the report is dominant trans stereoselection by N-
trichloroacetyl (TCA) protection group in the Hg(II)-
mediated intramolecular amidomercuration reactions
of 5-alkenyl amides (H at the C4 in Eq. 1).
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A literature survey revealed that allylic alkoxy/hydroxy
groups could also exhibit stereodirecting effects in the
Hg(II)-mediated intramolecular amidomercuration
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reactions.5 These prompted us to investigate ‘matching’
and ‘mismatching’ effects (double stereodifferentia-
tion) by allylic p-methoxybenzyloxy (PMBO) group
and N-trichloroacetyl group in the Hg(II)-mediated
intramolecular amidomercuration reactions of 4-alkoxy-
5-alkenyl amides I (PMBO at the C4 in Eq. 1).6

Furthermore, the amidomercuration products of I con-
tain 2,6-disubstituted 3-piperidinol structures II, which
have been found in many bioactive alkaloids such as
julifloridine,7 cassine,8 Bao Gong Teng A,9 juliprosine,10

clavepictines,11 and lepadines12 (Fig. 1). Therefore, the
development of the highly diastereoselective amidomer-
curation reactions of I would be of particular use for the
stereoselective/asymmetric synthesis of such alkaloids.13

The requisite optically pure 4-PMBO-5-alkenyl amides I
for double stereodifferentiation studies could be
accessed from the optically pure allylic alcohols 3 and
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Figure 1. Various 2,6-disubstituted 3-piperidinol alkaloids.
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Scheme 1. Synthesis of optically pure allylic alcohols.
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4. As shown in Scheme 1, 3 and 4 were obtained via the
lipase-catalyzed kinetic resolution of the readily avail-
able racemic allylic alcohol 114 with vinyl acetate as an
acyl donor in THF.15 At 46% conversion, the ee’s of
the acetate 2 and the remaining alcohol 3 were 97%
and 83%, respectively. The optical purity of 3 was fur-
ther improved to 99% (at 12% conversion) by subjecting
3 to the second round of the resolution. The transesteri-
fication reaction of 2 with MeOH in the presence of
K2CO3 provided the optically pure allylic alcohol 4.

Scheme 2 depicts how the optically pure allylic alcohols
3 and 4 were converted to the optically pure I (= the
compounds 9 and 10). The hydroxy group of 3 was pro-
tected by PMBCl and KH in DMF to give the PMB
ether 5. Acidic hydrolysis of 5 followed by the modified
Horner–Wadsworth–Emmons olefination of the result-
ing aldehyde generated the a,b-unsaturated ester 6.16

DIBAL reduction of 6 furnished the allylic alcohol 7,
which upon treatment with CCl3CN and DBU in
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Scheme 2. Synthesis of substrates for the amidomercuration.
CH2Cl2 at 4 �C transformed into the trichloroacetimi-
date 8.17 Enantioselective Overman rearrangement reac-
tion of the imidate 8 by a chiral cobalt oxazoline
palladacycle III [(S)-(+)-COP-Cl] in CH2Cl2 gave rise
to the N-trichloroacetyl derivative 9 of the optically pure
I.18 The N-trichloroacetyl derivative 10 of the optically
pure I, where the stereochemistry of the PMBO group
at C4 is opposite to that in 9, was obtained by applying
Scheme 2 to compound 4.

Double stereodifferentiation studies were conducted
with 9 and 10, and the results are given in Scheme 3.
Compound 9 represented a matched case, since the
2,6-trans-directing effect of the N-trichloroacetyl group
and the 2,3-cis-directing effect of the PMBO group were
expected to reinforce each other to give the diastereomer
11 in a high diastereoselectivity.4,5 Indeed, the amidom-
ercuration reaction of 9 with Hg(TFAO)2 in the pres-
ence of K2CO3 (to prevent the deprotection of the
PMB group as well as the establishment of the equili-
brating amidomercuration conditions by trifluoroacetic
acid generated during the amidomercuration reaction)
in nitromethane produced the 2,6-trans diastereomer
11 in >20:1 diastereoselectivity, and the trichloroacetyl
group was deprotected under the conditions. When 9
was subjected to K2CO3 in nitromethane, the trichloro-
acetyl group was not deprotected even after a prolonged
reaction time. Furthermore, the amidomercuration
product of 9 (compound 12) was independently pre-
pared by treating 11 with trichloroacetyl chloride and
Et3N in CH2Cl2. Upon exposure to the amidomercu-
ration conditions, 12 was converted to 11 in almost
quantitative reaction yield. These results indicated
that the amidomercuration reaction took place on 9,
not on the amine resulting from the trichloroacetyl
deprotection of 9, and the deprotection of the trichloro-
acetyl group occurred after the amidomercuration to
give 11.

Surprisingly, the amidomercuration reaction of the mis-
matched diastereomer 10 also proceeded with >20:1
diastereoselectivity in favor of the 2,6-trans diastereo-
mer 14, despite the expectation that the N-trichloro-
acetyl group and the allylic PMBO group should
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Scheme 3. Double stereodifferentiation in the amidomercuration.
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Scheme 4. Asymmetric synthesis of (+)-iso-6-cassine.
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oppose each other. These results indicate that the stereo-
chemical outcome of the amidomercuration reactions is
completely governed by the N-trichloroacetyl group,
and the allylic PMBO group has little effect. In both
cases, diastereoselectivities of the amidomercuration
reactions were determined by measuring the relative
integration of the diastereomeric methyl groups at C-2
after the reductive demercuration of the mercurial com-
pounds 11 and 14 followed by the Cbz protection of the
resulting amines to 13 and 15, respectively.

For the confirmation of the stereochemistry of 13 and a
synthetic utility of the developed reactions, compound
13 was elaborated to (+)-iso-6-cassine (Scheme 4). Cross
metathesis reaction of the olefin 13 with dodec-11-en-2-
one using the 2nd generation Grubbs’ catalyst19 in
refluxing CH2Cl2 afforded 16 as a mixture of E and Z
isomers. Deprotection of the PMB group by CAN20

followed by hydrogenation gave rise to (+)-iso-6-cassine
(17), 1H and 13C NMR spectra of which matched those
in the literature.21

In summary, it has been shown that stereoselection in
the Hg(II)-mediated intramolecular amidomercuration
reactions of 5-alkenyl amides with a pendant allylic
PMBO group is completely governed by N-TCA group,
and the stereochemistry of the allylic PMBO group
has little effect on the cyclization stereochemistry. The
developed intramolecular amidomercuration reactions
were used for the first asymmetric synthesis of (+)-iso-
6-cassine. The origin and generality of the dominant
2,6-trans directing effect by the N-trichloroacetyl group
in the intramolecular amidomercuration reactions are
currently under investigation, and the results will be
reported in due course.
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